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The current distribution in an aluminium electrolysis cell with a Soderberg anode was calculated to 
supplement measured data (Part I of  this study). A numerical method based on the conservative 
scheme was used. A 2D cross section of a commercial cell was considered and the electric fields in 
the anode, cathode and the electrolyte were considered under steady state conditions. Four  different 
approximations of  a curvilinear boundary  were proposed. The overvoltage for both electrodes was 
introduced. The current  density decreased along the side of  the anode from the nominal value 
0 . 8 A c m  -2 on the underside to 0 .26Acm -2 in the upper part  near the surface of  the electrolyte. 
The calculated current density along the side of the Soderberg anode for all the approximations 
was compared with the measured data, and the agreement was within 10 to 15%. In the curved 
part  of  the anode the differences between measured and calculated values were 20-28%; but in this 
region the accuracy of the experimental data was in the same range. Also the finite element method 
was used for the comparison of  the calculated current density. 

List of symbols 

d, l, w 

/av 

E 
I 
/1,2, /2,1, /3,4, •4,3 

I4,1, •2,3, /4,2, /2,4... 

J 
R(i,j) 

S 

U 

P 

Greek symbols 

height, length and width of the 
unit cell (cm), see Figs 2 and 4 
length of the diagonal line used 
for averaging, see Fig. 10 

A 
electrode potential (V) A1 
current (A) 

avr 
currents flowing in and out the 

C 
cell (i,j), see Equations 18-22 

E 
and Fig. 4 

E2 
diagonal currents, see Fig. 6, and 
Equations 34-37 
current density (Acm -2) loc 

rev 
residuum, see Equations 24 and 
25 
area perpendicular to the current 
flOW (cm 2) 
cell voltage (V) 

r/ overvoltage (V) 

1. Introduction 

Part I of this paper [1] treated an experimental study 
of the current distribution along the side of the anode 

Subscripts 

Galvani potential (V) 
specific resistivity (f~ cm) 

anode 
in the anode stud, see Fig. 3 
averaged value 
cathode 
electrolyte 
in the bulk of the electrolyte, see 
Fig. 3 
local values 
reversible 

Superscripts 

E 

S 

M 

in the electrolyte at the interface, 
see Fig. 1 
in the metallic phase at the inter- 
face, see Fig. 1 
in the metallic phase, see Fig. 1 

in aluminium electrolysis cells of the Soderberg type. 
A voltage probe attached to a position sensor was 
used to map the potential distribution in the side 
channel of the cells, and the current distribution along 
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the side of the anode was derived from this data. Due 
to some scatter in the measured data, and problems in 
positioning the probe under the curved part of the 
anode, it was decided to check the experimental data 
against a 2D mathematical model. The purpose of 
this second paper is to identify the electrical field 
distribution in Soderberg aluminium cells [2, 3], con- 
sidering the electric field in the anode, electrolyte 
and cathode, and taking into account the effects of 
the anodic and cathodic overvoltages. The conserva- 
tive scheme for the solution of the Laplace equation 
in 2D space [4, 5] was used. Steady state conditions 
were assumed, and any influence on the electric field 
by the temperature or by the magnetic field was not 
considered. 

2. Mathematical  description of  the 2D model 

An electrolytic cell consisting of anode, cathode and 
electrolyte was considered taking the anode as the 
most positive part of the system, and the cathode as 
the most negative. The cell voltage, U, was therefore 
given as the difference between the Galvani potential 
in the anode busbar ~ ,  and in the cathodic busbar 

M 
PC, 

v:p -p  ( l )  

The shape of the anode and of the wall of the cavity, 
which is limited by a ledge of frozen electrolyte, was 
measured in Part I of this work [1]. A typical shape 
is shown in Fig. 1. The difference of Galvani poten- 
tials in Equation l can simply be changed into the 
difference between voltage drops along any current 
line going from the anode to the cathode. 

v : (pA - pf , )  + ( C  - + - 

+ (p~ _ ps) + (pS _ ~oM) (2) 

The Galvani potentials of the anode and the cathode 
represent the cell voltage. From Equation 2 it follows 
that the cell voltage consists of 

pA M _ ps,  the voltage drop (ohmic) in the anode 
material 

yl 
X 

Anode 

/.ath 
CpAE 

(pA M 

~ Stud 

Liquid 
aluminium 

Molten 
electrolyte 

(pc M 

Fig. 1. Sketch of a cross section of a part of an aluminium cell with a 
Soderberg anode. 

ps  _ p~, the potential of the anode (EA) 
s 

- Pc, the voltage drop in the electrolyte 
p~ _ ps,  the potential of the cathode ( -Ec )  
ps M 

- Pc ,  the voltage drop in the cathode material. 

The definition of the anode potential is given by Equa- 
tion 3: 

EA = p S  _ (p~ + c o n s t a n t  (3) 

where the constant depends on the reference electrode 
used. The constant may be set equal to zero without 
any loss of information. The same is valid for the 
cathode: 

Ec = ps  _ p~ + constant (4) 

The electrode potentials are the sum of the reversible 
potential and an overvoltage: 

EA = Erev,a -4- ~]A(Jn,A) (5) 

E C = Erev, C -4- ~ c ( J n , c )  (6) 

The reversible cell voltage Erev,cell is given by Equation 
7: 

Erev,cei1 = Erev, A - Erev, C (7) 

with the assumption Erev,C = 0 
Using Equations 3-7 we can rewrite Equation 1 or 

2 in the following way: 

S = Erev,cell + ~]A(Jn,A) --  r/C(Jn,c) + (PA M -- p S )  

The last three terms in Equation 8 represent ohmic 
losses in the anode material, the electrolyte and in 
the cathode material. To calculate these values, Ohm's 
law in vector notation was introduced: 

1 
j = - - V p  (9) 

P 

For the unidirectional case (in the direction of the x 
coordinate; for the definition of the coordinate 
system, see Fig. 4); 

10p 
L = - P O x  (10) 

If we assume that the specific resistivity is constant 
along a current line o f  length l, integration of  
Equation 10 leads to 

c;~ - ~2 = j p l  (11) 

In many cases it is more useful to use the current I, 
instead of the current density j, 

j = I / S  (12) 

The voltage drop in an element as shown in Fig. 2 is 

P l  - -  (,02 = I I g ( l / S )  ( 1 3 )  

where the potentials Pl and ~2 are the potentials at the 
sides of the unit cell. A space with changing specific 
resistivity (in 1D, 2D or 3D space) can be treated 
as a set of elements, each with a constant specific 
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Fig. 2. Spatial element with constant specific resistivity. 

resistivity p, 

~91 -- ~2 ~- I [p l ( l l / S1 )  + p2(12/$2)] (14) 

On the boundary between two neighbouring elements 
a voltage drop may be present. This voltage drop is 
the potential E of the anode or cathode, see Fig. 3. 

For the anode, 

~A,1 -- S = ipg( lA /S  ) (15a) 

~o s - ~,~ = EA (15b) 

E __ 99E,2 = I p E ( I E / S  ) (1 5C) 

Adding Equations 15(a), 15(b) and 15(c) we obtain 

(~gA, 1 --  99E,2 --  EA)  ~ I [ p A ( I A / S  ) -}- pE(IE/S)] (16) 

where 9~A,1 -- ~E,2 -- EA > 0 and I > 0. 
Figure 3 is valid for the so-called rectangular grid. 

The potentials ~OA1 and g)E2 are the potentials of the 
points located in the middle of the cells in the 
neighbourhood of the anode boundary. 

In Fig. 4 a rectangular grid in 2D space is shown. 
The fluxes are denoted with bold letters (I), and the 
boundary indices (m) of the calculation unit in italics. 
The figure shows the so-called central cell (i,j) 
surrounded by its neighbouring points. 

The currents flowing in and out of the cell (i,j) are 
denoted I1,2, I2,1, 13,4, 14,3- In the following equations 
A(i,j ,  k, l) represent the voltage drop on the boundary 
kll. This voltage drop is equal to the electrode poten- 
tial on the electrode/electrolyte boundary. In the 
electrolyte or in the electrode material A(i , j ,k ,  l) is 

I . . . . . . . .  " ~ ' ~  

pE) 

' . . . . . . . . . . .  ~ : " i "  

s2 
Fig. 3. Two spatial elements with different specific resistivities. The 
potentials gPA1, and ~B2 are the potentials of the points located in the 
middle of the cells in the neighbourhood of the anode boundary. 
The potential ~s  is located at the anode surface (in the anode 
material) and the potential ~ is located at the anode surface in 
the electrolyte. 

equal to zero. For example, current going from the 
boundary line m = 1 to the line m = 2 of the neigh- 
bouring unit is written as 

I1, 2 = cp(i - 1,j) - ~y(i,j) - A(i,j ,  1,2) (17) 
d d 

p(i - 1,j) ~-~ + p(i,j) 2-d 

Equation 17 may be rewritten as: 

_ 2 ~ ( i -  1,j) - ~(i,j) - A(i,j ,  1,2) 
I1,2 (18) 

p(i - 1,j) + p(i,j) 

where 

A(i,j,  1,2) = E a 

A(i,j ,  1,2) = --EA 

A(i,j,  1,2) = 0 

if ~ ( i -  1,j) is located in the 
anode material and ~(i,j) is 
located in the electrolyte, 

if ~ ( i -  1,j) is located in the 
electrolyte and ~(i,j) is 
located in the anode material, 

for both potentials loCated in 
the anode or cathode material 
boundary, or in the electrolyte. 

i3,4 = _2~o(i,j - 1) - ~(i,j) - A(i,j ,  3,4) (20) 
p(i,j - 1) + p(i,j) 

I 4 , 3 =  - 2  ~ ( i ' j +  l ) - ~ ( i ' j ) - A ( i ' j ' 4 ' 3 )  (21) 
p(i,j + 1) + p(i,j)  

At steady state the integral of the current density 
normal to the surface has to be zero: 

f J n  = (22) dS 0 

Equations 18-21 can be used for the evaluation of 
Equation 22, if there are only the above mentioned 
four fluxes: 

I1,2 + I2,1 + I3, 4 + I4, 3 = 0 (23) 

On the basis of Equation 23 the residuum R(i,j) can 
be introduced in Equation 24, 

R(i, j)  = 2 T ( i -  1,j) - g)(i,j) - A(i,j ,  1,2) 
p(i - 1,j) + p(i,j) 

~(i + 1,j) - ~(i,j) - A(i,j ,  2, 1) + 
p(i + l , j)  + p(i,j) 

qo( i,j - 1) - ~( i,j) - A ( i,j, 3, 4) + 
p(i,j - 1) + p(i,j) 

+~(i,j+_l)--~_(i,j)-A(i,j,4,3)]p(_[,j + 1) + p ( i , ~  (24) 

Equation 23 is satisfied if for all points (i,j) in the 2 D  
space: 

R(i , j )  = 0 (25) 

Equation 25 represents the so-called conservative 

Similar relations can be found for the boundaries 
m = 2, 3 and 4. 

I2, , = - 2  ~(i + 1,j) - ~(i,j) - A(i,j ,  2, 1) (19) 
p(i + 1,j) + p(i,j) 
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Fig. 4. Notation of currents for a rectangular 
grid in 2D space. The fluxes are denoted with 
bold letters (I) and the indices follow the nota- 
tion of boundaries left by the current. Boundary 
indices (m) of the calculation unit are written in 
italics. 

scheme for the calculation of Galvani potentials in the 
considered space. 'Conservative' simply means that all 
the current which flows into the cell also flows out of 
the cell. The conservative scheme with residuum 
R(i,j), given by Equation 24, also fulfils the Laplace 
equation for a space with varying specific resistivity: 

Equation 26 can also be approximated in such a way 
that the conservation of current is not preserved. The 
most well-known nonconservative approach uses the 
finite difference method. 

3. Assumptions 

In the case under study the following assumptions 
were made: 

(i) The voltage drop in the cathode metal was 
neglected. 

(ii) The Galvani potential of the cathode was set to 
zero. 

qpM = 0 (27) 

(iii) From Equations 27 and 1 it follows that 

~A M = U (28) 

The Galvani potential of the steel studs in the anode 
(see Fig. 1) was set equal to the cell voltage. 

(iv) Input data for the calculations were taken for a 
typical industrial cell [1, 2, 3, 6]: 

specific resistivity of the Soderberg anode: 
0.008 f~ cm [1] 
specific resistivity of the electrolyte: 0.465 f~ cm 

valid for the following composition and temperature: 
11 wt % A1F3, 5 wt % CaF3, 3 wt %A1203, 960 °C = 
1233K. 

(v) For the cathode overvoltage a linear polariza- 
tion curve was assumed, with 

r/c = -0.081j I (29) 

Using Equations 27, 29 and 4 we obtain 

= - , c  (30)  

It follows that the Galvani potential at the cathode 
surface from the electrolyte side is equal to the nega- 
tive cathodic overvoltage. 

(vi) For the anode potential it follows that Erev,A is 
equal to Erev,cell [4]. 

Erev, A = Erev,cell ; Erev,cell -= 1.23 V [2] (31) 

for the temperature and composition given above. 
The anode overvoltage was approximated by a Tafel 
equation 

Y]A = a + blog(j)  (32) 

whe re j  is in Acre -2, and a =  0.5V and b = 0.25V 
decade -1 [2]. 

From Equations 31, 32 and Equation 3 the defini- 
tion of A(i , j ,k , l )  needed for the use of Equations 
18-21 follows: 

A(i,j, k, l) = Erev,cell -5- a + b log (j)  (33) 

Equation 33 is valid for the point (i,j) located in the 
anode and the point near the boundary located out- 
side the anode (i.e., in the electrolyte). 
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(vii) The condition of symmetry through the centre 
of the vertical stud in Fig. 1 (in the y-direction) was 
used. The condition of symmetry was the same as 
the condition of the insulated wall: no current was 
flowing in the direction normal to the plane of symme- 
try. 

(viii) The anode contour line was derived by aver- 
aging four measured industrial anode shapes [7]. 
The slope of the averaged anode contour near the 
electrolyte level (below it) corresponds to the angle 
(~ = 80 ° to the horizontal. 

(ix) It was assumed that the side of the anode com- 
ing into the electrolyte is vertical. In reality it is sub- 
jected to burning in  air and has an angle of a few 
degrees less than 90 ° . 

4. C a l c u l a t i o n  pro cedure  

(i) For a 2D cross-section of the industrial cell 
represented in Fig. 1 the Galvani potentials were 
calculated. The whole space was divided into rec- 
tangles 0.4cm x 0.4cm. (i.e., d = 0.2cm, see Equa- 
tion 17). 

(ii) For modelling the shape of the anode boundary 
diagonals of the rectangles were also use& For the 
equation of currents in that case see the explanation 
given below. The conservative scheme is valid for 
elements crossed by a diagonal boundary as well. 

(iii) Starting values of the Galvani potentials were 
estimated on the assumption that the average anode 
current density is 0.8Acre -2. These starting values 
were also used for the calculation of A(i,j ,  k, l) values 
around the anode boundary. 

(iv) To improve these potentials the successive 
overrelaxation method (SOR) was used, this being 
an iterative method. In each iteration the potential 
in the point (i,j) is improved so as to better fulfil the 
condition given by Equation 25. The iteration proce- 
dure was used as many times as necessary until the 
desired threshold (accuracy) for all potentials (in all 
(i,j) points) was reached. 

(v) When the threshold was reached (10 -l° V) for 
all ~(i,j), all values of A(i,j ,  k, l), (see Equation 33), 
around the anode boundary, as well as the poten- 
tials of the anode boundary, were corrected using 
the newly calculated current density. Also, the 

potentials at the cathode boundary were corrected 
using the newly calculated currents. To minimize 
instabilities in A(i,j,  k, l) only a certain fraction of 
the newly calculated values of A(i,j ,  k, l) was used. 

(vi) When the selected threshold for AA (10 -6 V) 
was reached, the calculation was terminated. 

(vii) For the approximation of the curvilinear 
boundary of the anode (see Fig. 1) several techni- 
ques were used: two different approximations of a 
rectangular boundary (lower and upper approxi- 
mation), and two different approximations of a 
diagonal boundary (diagonal boundary with and 
without fluxes along the diagonal boundary). These 
four cases are illustrated in Fig. 5, where the 
approximation lines of the anode boundary are 
shifted sidewise to display the anode boundary 
more clearly. 

For the rectangular approximation of the curvilinear 
boundary the above mentioned formulae were used 
while the formulae for the diagonal approximation 
are given in the following. The scheme of a diagonal 
approximation of one case is given in Fig. 6, where 
the case of an element located in the electrolyte near 
the anode surface is shown. Due to the diagonal 
approximation, a point which is in the neighbourhood 
of a boundary does not have the same fluxes as in the 
rectangular 2D elements. Two fluxes are crossing the 
diagonal boundary, 14,1 and /2,3, see Equations 34 
and 35. 

I4,1 = I2, 3 (34) 

I4,1 = ~p(i + 1,j + 1) - ~(i , j)  - A(i,j ,  4, 1) (35) 
p(i + 1, j+  1) + p(i,j) 

The difference between the diagonal approximation 
with current flow along the diagonal boundary and 
the same approximation without currents along the 
boundary, lies in the fact that in the latter case, the 
two fluxes along the boundary in both diagonal direc- 
tions (up and down) are neglected, see Fig. 6. These 
new fluxes I4, 2 and I2, 4 (see dotted arrows in Fig. 6) 
have the following formulae: 

_ ~ ( i  - 1 , j  + 1) - ~(i,j) (36)  
I4,2-- p(i 1, j+  1) Tp( i , j )  

Diagonal 

! 
One segment 

Iof the curvilinear 
[anode boundary 

Rectangular 
boundary lower boundary 

Rectangular 
upper boundary ] 

Fig. 5. Curved anode boundary approximation 
by four different methods: diagonal boundaries, 
lower rectangular boundary, and upper rectan- 
gular boundary. 
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(b) 

Fig. 6. Curved boundary approximation using diagonal boundary: (a) the shape of the diagonal element, (b) position of the diagonal element 

~(i + 1,j - 1) - ~(i,j) (37) 
I2,4 -- p(i+ 1,j 1)+p(i,j) 

The residuum was also modified in accordance with 
these changes. 

5. Results 

One of  the measured sets of  data  presented in Part  I 
of  this paper,  denoted A, was used for comparison.  
Set A has a slope o f  the anode contour  line near 
the electrolyte level corresponding to the angle 
oz = 80 °. The calculated equipotential  lines in the 
electrolyte, shown in Fig. 7, are close to the lines 

based on the measured data  [1]. The deviation of  
the calculated equipotential  lines f rom the measured 
data was less than 10%. 

The space filled with the electrolyte can be divided 
into two zones. The first zone has a varying potential 
gradient (shown by the varying distance between the 
equipotential lines), which is typical for the area under 
the near vertical and curved part  of  the anode. In the 
second zone, encompassing the horizontal part  of  the 
anode, the equipotential lines are equidistant, where 
the current densities can be regarded as being con- 
stant. All the equipotential lines except the uppermost  
one are located in the electrolyte bulk. The upper 
equipotential line is placed very close to the anode 

20 

18 

16 

14 

12 
E 
o 10 

~" 8 

6 

4 

2 ~ $ 0 , 0 '  - -  
- -  3 0 0 , 0  

0 ~ I i 1 ~ I i f J 

40 50 60 70 80 

x/cm 
Fig. 7. Calculated equipotential lines in the electrolyte at the side of the Soderberg anode (units in mV). The upper line (without value in mV) 
is very close to the anode boundary. Origin of the y axis is located at the level of aluminium. 
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0.40 

0.20 

/ j '  , ~ e  horiz~,tal ..~" ~ LPart of the anode 

f 
i I ' I ' I ' I 

0.00 4.00 8.00 12.00 16.00 
I Immersion depth of the anode in the eLectrolyte/cm 

I 

Level of the electrolyte I 

Fig. 8. The current density at the side of the anode as a 
function of the depth of immersion. Calculation using 
diagonal boundary approximation. Origin of the y axis 
is located at the level of the electrolyte. K e y :  
( . . . . . . . . .  ) diagonal boundary; ( . . . . . .  ) diagonal 
boundary with currents along boundary; ( - - )  
measured values; ( . . . . . . .  ) F E M .  

surface and is obtained using an extrapolation made 
by the graphics software. The shape of the anode 
surface contour is not smooth due to the method 
used for the anode surface approximation, see Fig. 
5, that is, a diagonal boundary. 

In Figs 8 and 9 the measured [1] and the calculated 
values of the current density (c.d.) can be compared. 
The measured values are averaged current densities 
on the anode surface. For depths more than 10cm 
below the surface, measured from the upper level of 
the electrolyte, the measured data were uncertain 

because of problems in positioning the probe. The 
present calculation gave local current densities for 
all (i,j) points. These values were averaged before 
plotting in Figs 8 and 9. 

For the conservative scheme the local current densi- 
ties (from the calculation) were averaged over the pro- 
jection line going from the upper left corner to the 
lower right corner of the averaging interval; so-called 
averaging over a diagonal line, as shown in Fig. 10. 

The calculated results, based on the conservative 
scheme were averaged over diagonal lines covering the 

1.00 

0.80 - -  

,,7., 
E 
,,< 
,-... 

¢o 0.60 

8 

0.40 ] 

I 

0.20 I 

/ ,,';"  o,,oo,a, 1 
/ ~ r t  of the anode I 

/ z j 
/_-. , . -""" L 

" ' " - - . _ .  . . . . . .  _ - . _ j "  

' I ' I ' i ~ I 
0.00 4.00 8.00 12.00 16.00 
I Immersion depth of the anode in the electrolyte / cm 

tLheV: 'le°~t r o ly t e~ 

Fig. 9. The current density at the side of the anode as 
a function of the depth of immersion. Calculation 
using rectangular boundary approximation. Origin 
of the y axis is located at the level of the electro- 
lyte. K e y :  ( . . . . . . . . .  ) upper rectangular boundary; 
( . . . . . .  ) lower rectangular boundary; ( - - )  
measured values. 
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Projection ] 
line lav (AC), I 
(so-called [ 

A~ diagonal [ 
tine~.q.~___.~ 

i .............. / " 1 -  

" B ' \~ 

1 

Fig. 10. The scheme of averaging current densities (averaging over 
the projection line lav going from the upper left hand corner to 
the lower right hand corner, the so-called diagonal line), see equa- 
tion 42. 

relative height of five calculation units (2 cm). Both the 
local current densities calculated by the conservative 
scheme, and the measured local current densities at the 
side of the anode, close to the surface of the electrolyte, 
were in the range 0.26-0.28 A cm -2. For the lower part 
of the anode side the calculated current densities were 
lower than the measured values. This could firstly be 
due to the fact that bubble effects were not considered, 
or secondly that the mesh distance (d) was not small 
enough, that is, the anode contour was not approximated 
by a smooth curve, due to the mathematical method used. 
To check the influence of the curvilinear boundary 
approximation on the calculation, the finite element 
method (FEM) [4, 8] was used. With the finite element 
method the anode contour was approximated by a 
smoother curve and the local c.d.'s are closer to the mea- 
sured values in that zone, as shown in Fig. 9. For the con- 
servative scheme it can be seen that calculated and 
measured values are close on the side near the anode 
(the differences are 10-15%). On the curved part of the 
anode boundary the calculated values are lower than 
the measured values (the differences are 20-28%). In 
this area there were problems with the access of the probe 
(see [II) so the measured curves were uncertain. 

The local c.d.'s obtained by FEM are higher than 
those obtained by the conservative scheme. On the ver- 
tical part of the anode the calculated values by FEM are 
about 15% higher than the measured values. On the 
curved part of the anode the values of the local c.d. 
obtained by FEM are closer to the measured values 
than those obtained by the conservative scheme. In 
Fig. 9 the calculated current density using rectangular 
boundaries with averaging over diagonal lines are 
shown. It can be observed that generally the averaging 
effects are similar, but on the side of the anode the dif- 
ferences between calculated and measured values are 
lower for the lower rectangular approximation than 
for the upper. The averaging over diagonal lines, which 
is very close to the averaging done during the measure- 
ment of equipotential lines, minimizes the influences of 
the boundary approximation on the local current densi- 
ties. On the horizontal part of the anode the difference is 
only about 3%. In Fig. 11 the local c.d.'s along the 
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Fig. 11. Current densities (in A cm -2) along anode boundary 
calculated using diagonal boundary approximation. Values of 
c.d.'s with their horizontal and vertical position. Origin of the y 
axis is located at the level of the electrolyte. 

anode boundary are shown. The position and values 
of local c.d. can be seen together with its positions in 
the x and y directions. 

Two methods were used in this study for solution of  
the Laplace equation: the conservative scheme and the 
FEM. The advantage of the conservative scheme 
issues from the fact that summing the currents on 
the anodic and cathodic side leads to the total current 
values with an error comparable to that of the 
potential. In this way the correct implementation of 
the conservative scheme may be simply checked. The 
use of the conservative scheme for the complex cell 
geometry requires complex software. The FEM uses 
one equation for all triangles, filling 2D space of  any 
geometry. On the software market good mesh genera- 
tors for the FEM are available. It was necessary to 
develop, for the studied case, the FEM solver for the 
secondary current distribution. 
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